Antarctic ozone variability inside the polar vortex estimated from balloon measurements
نویسندگان
چکیده
Thirteen years of ozone soundings at the Antarctic Belgrano II station (78 S, 34.6 W) have been analysed to establish a climatology of stratospheric ozone and temperature over the area. The station is inside the polar vortex during the period of development of chemical ozone depletion. Weekly periodic profiles provide a suitable database for seasonal characterization of the evolution of stratospheric ozone, especially valuable during wintertime, when satellites and ground-based instruments based on solar radiation are not available. The work is focused on ozone loss rate variability (August–October) and its recovery (November– December) at different layers identified according to the severity of ozone loss. The time window selected for the calculations covers the phase of a quasi-linear ozone reduction, around day 220 (mid-August) to day 273 (end of September). Decrease of the total ozone column over Belgrano during spring is highly dependent on the meteorological conditions. Largest depletions (up to 59 %) are reached in coldest years, while warm winters exhibit significantly lower ozone loss (20 %). It has been found that about 11 % of the total O3 loss, in the layer where maximum depletion occurs, takes place before sunlight has arrived, as a result of transport to Belgrano of air from a somewhat lower latitude, near the edge of the polar vortex, providing evidence of mixing inside the vortex. Spatial homogeneity of the vortex has been examined by comparing Belgrano results with those previously obtained for South Pole station (SPS) for the same altitude range and for 9 yr of overlapping data. Results show more than 25 % higher ozone loss rate at SPS than at Belgrano. The behaviour can be explained taking into account (i) the transport to both stations of air from a somewhat lower latitude, near the edge of the polar vortex, where sunlight reappears sooner, resulting in earlier depletion of ozone, and (ii) the accumulated hours of sunlight, which become much greater at the South Pole after the spring equinox. According to the variability of the ozone hole recovery, a clear connection between the timing of the breakup of the vortex and the monthly ozone content was found. Minimum ozone concentration of 57 DU in the 12–24 km layer remained in November, when the vortex is more persistent, while in years when the final stratospheric warming took place “very early”, mean integrated ozone rose by up to 160–180 DU.
منابع مشابه
Changes in the polar vortex: Effects on Antarctic total ozone observations at various stations
[1] October mean total column ozone data from four Antarctic stations form the basis for understanding the evolution of the ozone hole since 1960. While these stations show similar emergence of the ozone hole from 1960 to 1980, the records are divergent in the last two decades. The effects of long‐term changes in vortex shape and location are considered by gridding the measurements by equivalen...
متن کاملTransport out of the Antarctic polar vortex from a three-dimensional transport model
[1] A three-dimensional chemical transport model is utilized to study the transport out of the Antarctic polar vortex during the southern hemisphere spring. On average, over five consecutive years between 1993 and 1997, horizontal transport out of the vortex into the midlatitude stratosphere is smaller than vertical transport into the troposphere. However, there is significant interannual varia...
متن کاملOzone and temperature profiles measured above Kiruna inside , at the edge of , and outside the Arctic polar vortex in February and March 1997
Ozone depletion above Kiruna (67.9N, 21.1E), Sweden, was investigated using daily ozone and temperature measurements by ozonesondes between 1 February and 25 March 1997. Using UKMO Ertel’s potential vorticity (EPV) and wind fields, three dynamically distinct regions were defined on a grid of isentropic surfaces viz.: the polar vortex boundary region characterized by steep EPV gradients, the are...
متن کاملInterpretation of recent Southern Hemisphere climate change.
Climate variability in the high-latitude Southern Hemisphere (SH) is dominated by the SH annular mode, a large-scale pattern of variability characterized by fluctuations in the strength of the circumpolar vortex. We present evidence that recent trends in the SH tropospheric circulation can be interpreted as a bias toward the high-index polarity of this pattern, with stronger westerly flow encir...
متن کاملSimulation of polar ozone depletion: An update
We evaluate polar ozone depletion chemistry using the specified dynamics version of the Whole Atmosphere Community Climate Model for the year 2011. We find that total ozone depletion in both hemispheres is dependent on cold temperatures (below 192 K) and associated heterogeneous chemistry on polar stratospheric cloud particles. Reactions limited to warmer temperatures above 192 K, or on binary ...
متن کامل